Aromasin Information
Aromasin (Exemestane) Dosage And Administration
For patients receiving Aromasin (Exemestane) with a potent CYP 3A4 inducer such as rifampicin or phenytoin, the recommended dose of Aromasin (Exemestane) is 50 mg once daily after a meal.
The safety of chronic dosing in patients with moderate or severe hepatic or renal impairment has not been studied. Based on experience with exemestane at repeated doses up to 200 mg daily that demonstrated a moderate increase in non life-threatening adverse events, dosage adjustment does not appear to be necessary
Aromasin (Exemestane) Dosage Forms And Strengths
Aromasin (Exemestane) Tablets are round, biconvex, and off-white to slightly gray. Each tablet contains 25 mg of exemestane. The tablets are printed on one side with the number "7663" in black.
Aromasin (Exemestane) Contraindications
Aromasin (Exemestane) Tablets are contraindicated in patients with a known hypersensitivity to the drug or to any of the excipients.
Aromasin (Exemestane) may cause fetal harm when administered to a pregnant woman. Based on its mechanism of action Aromasin (Exemestane) is expected to result in adverse reproductive effects. In non-clinical studies in rats and rabbits, exemestane was embryotoxic, fetotoxic, and abortifacient.
Aromasin (Exemestane) is contraindicated in women who are or may become pregnant. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus.
Aromasin (Exemestane) Tablets should not be administered to premenopausal women .
Aromasin (Exemestane) Warnings And Precautions
In patients with early breast cancer, the incidence of hematological abnormalities of Common Toxicity Criteria (CTC) grade ≥1 was lower in the exemestane treatment group, compared with tamoxifen. Incidence of CTC grade 3 or 4 abnormalities was low (approximately 0.1%) in both treatment groups. Approximately 20% of patients receiving exemestane in clinical studies in advanced breast cancer experienced CTC grade 3 or 4 lymphocytopenia. Of these patients, 89% had a pre-existing lower grade lymphopenia. Forty percent of patients either recovered or improved to a lesser severity while on treatment. Patients did not have a significant increase in viral infections, and no opportunistic infections were observed. Elevations of serum levels of AST, ALT, alkaline phosphatase, and gamma glutamyl transferase > 5 times the upper value of the normal range (i.e., ≥ CTC grade 3) have been rarely reported in patients treated for advanced breast cancer but appear mostly attributable to the underlying presence of liver and/or bone metastases. In the comparative study in advanced breast cancer patients, CTC grade 3 or 4 elevation of gamma glutamyl transferase without documented evidence of liver metastasis was reported in 2.7% of patients treated with Aromasin (Exemestane) and in 1.8% of patients treated with megestrol acetate.
In patients with early breast cancer, elevations in bilirubin, alkaline phosphatase, and creatinine were more common in those receiving exemestane than either tamoxifen or placebo. Treatment-emergent bilirubin elevations (any CTC grade) occurred in 5.3% of exemestane patients and 0.8% of tamoxifen patients on the Intergroup Exemestane Study (IES), and in 6.9% of exemestane treated patients vs. 0% of placebo treated patients in the 027 study. CTC grade 3–4 increases in bilirubin occurred in 0.9% of exemestane treated patients compared to 0.1% of tamoxifen treated patients. Alkaline phosphatase elevations of any CTC grade occurred in 15.0% of exemestane treated patients on the IES compared to 2.6% of tamoxifen treated patients, and in 13.7% of exemestane treated patients compared to 6.9% of placebo treated patients in study 027. Creatinine elevations occurred in 5.8% of exemestane treated patients and 4.3% of tamoxifen treated patients on the IES and in 5.5% of exemestane treated patients and 0% of placebo treated patients in study 027.
Aromasin (Exemestane) Adverse Reactions
Aromasin (Exemestane) was generally well tolerated and adverse events were usually mild to moderate.
In the adjuvant treatment of early breast cancer, adverse events occurring in ≥10% of patients in any treatment group (Aromasin (Exemestane) vs tamoxifen) were hot flushes (21.2% vs 19.9%), fatigue (16.1% vs 14.7%), arthralgia (14.6% vs 8.6%), headache (13.1% vs 10.8%), insomnia (12.4% vs 8.9%), and increased sweating (11.8% vs 10.4%). Discontinuation rates due to AEs were similar between Aromasin (Exemestane) and tamoxifen (6.3% vs 5.1%). Incidence of cardiac ischemic events (myocardial infarction, angina, and myocardial ischemia) were Aromasin (Exemestane) 1.6%, tamoxifen 0.6%. Incidence of cardiac failure: Aromasin (Exemestane) 0.4%, tamoxifen 0.3%.
In the treatment of advanced breast cancer, the most common adverse events were mild to moderate and included hot flushes (13% vs 5%), nausea (9% vs 5%), fatigue (8% vs 10%), increased sweating (4% vs 8%), and increased appetite (3% vs 6%) for Aromasin (Exemestane) and megestrol acetate, respectively.
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Aromasin (Exemestane) Drug Interactions
In a pharmacokinetic interaction study of 10 healthy postmenopausal volunteers pretreated with potent CYP 3A4 inducer rifampicin 600 mg daily for 14 days followed by a single dose of exemestane 25 mg, the mean plasma C and AUC of exemestane were decreased by 41% and 54%, respectively.
Significant pharmacokinetic interactions mediated by inhibition of CYP isoenzymes therefore appear unlikely. Co-medications that induce CYP 3A4 (e.g., rifampicin, phenytoin, carbamazepine, phenobarbital, or St. John's wort) may significantly decrease exposure to exemestane. Dose modification is recommended for patients who are also receiving a potent CYP 3A4 inducer .
Aromasin (Exemestane) Use In Specific Populations
The pharmacokinetics of exemestane have been investigated in subjects with moderate or severe hepatic insufficiency (Childs-Pugh B or C). Following a single 25-mg oral dose, the AUC of exemestane was approximately 3 times higher than that observed in healthy volunteers.
The safety of chronic dosing in patients with moderate or severe hepatic impairment has not been studied. Based on experience with exemestane at repeated doses up to 200 mg daily that demonstrated a moderate increase in non life-threatening adverse events, dosage adjustment does not appear to be necessary.
Aromasin (Exemestane) Overdosage
Clinical trials have been conducted with exemestane given as a single dose to healthy female volunteers at doses as high as 800 mg and daily for 12 weeks to postmenopausal women with advanced breast cancer at doses as high as 600 mg. These dosages were well tolerated. There is no specific antidote to overdosage and treatment must be symptomatic. General supportive care, including frequent monitoring of vital signs and close observation of the patient, is indicated.
A male child (age unknown) accidentally ingested a 25-mg tablet of exemestane. The initial physical examination was normal, but blood tests performed 1 hour after ingestion indicated leucocytosis (WBC 25000/mm with 90% neutrophils). Blood tests were repeated 4 days after the incident and were normal. No treatment was given.
In mice, mortality was observed after a single oral dose of exemestane of 3200 mg/kg, the lowest dose tested (about 640 times the recommended human dose on a mg/m basis). In rats and dogs, mortality was observed after single oral doses of exemestane of 5000 mg/kg (about 2000 times the recommended human dose on a mg/m basis) and of 3000 mg/kg (about 4000 times the recommended human dose on a mg/m basis), respectively.
Convulsions were observed after single doses of exemestane of 400 mg/kg and 3000 mg/kg in mice and dogs (approximately 80 and 4000 times the recommended human dose on a mg/m basis), respectively.
Aromasin (Exemestane) Description
Aromasin (Exemestane) Tablets for oral administration contain 25 mg of exemestane, an irreversible, steroidal aromatase inactivator. Exemestane is chemically described as 6-methylenandrosta-1,4-diene-3,17-dione. Its molecular formula is CHO and its structural formula is as follows:
The active ingredient is a white to slightly yellow crystalline powder with a molecular weight of 296.41. Exemestane is freely soluble in N, N-dimethylformamide, soluble in methanol, and practically insoluble in water.
Each Aromasin (Exemestane) Tablet contains the following inactive ingredients: mannitol, crospovidone, polysorbate 80, hypromellose, colloidal silicon dioxide, microcrystalline cellulose, sodium starch glycolate, magnesium stearate, simethicone, polyethylene glycol 6000, sucrose, magnesium carbonate, titanium dioxide, methylparaben, and polyvinyl alcohol.
Aromasin (Exemestane) Clinical Pharmacology
Breast cancer cell growth may be estrogen-dependent. Aromatase is the principal enzyme that converts androgens to estrogens both in pre- and postmenopausal women. While the main source of estrogen (primarily estradiol) is the ovary in premenopausal women, the principal source of circulating estrogens in postmenopausal women is from conversion of adrenal and ovarian androgens (androstenedione and testosterone) to estrogens (estrone and estradiol) by the aromatase enzyme in peripheral tissues. Estrogen deprivation through aromatase inhibition is an effective and selective treatment for some postmenopausal patients with hormone-dependent breast cancer.
Exemestane is an irreversible, steroidal aromatase inactivator, structurally related to the natural substrate androstenedione. It acts as a false substrate for the aromatase enzyme, and is processed to an intermediate that binds irreversibly to the active site of the enzyme, causing its inactivation, an effect also known as "suicide inhibition." Exemestane significantly lowers circulating estrogen concentrations in postmenopausal women, but has no detectable effect on adrenal biosynthesis of corticosteroids or aldosterone. Exemestane has no effect on other enzymes involved in the steroidogenic pathway up to a concentration at least 600 times higher than that inhibiting the aromatase enzyme.
Following oral administration to healthy postmenopausal women, exemestane is rapidly absorbed. After maximum plasma concentration is reached, levels decline polyexponentially with a mean terminal half-life of about 24 hours. Exemestane is extensively distributed and is cleared from the systemic circulation primarily by metabolism. The pharmacokinetics of exemestane are dose proportional after single (10 to 200 mg) or repeated oral doses (0.5 to 50 mg). Following repeated daily doses of exemestane 25 mg, plasma concentrations of unchanged drug are similar to levels measured after a single dose.
Pharmacokinetic parameters in postmenopausal women with advanced breast cancer following single or repeated doses have been compared with those in healthy, postmenopausal women. Exemestane appeared to be more rapidly absorbed in the women with breast cancer than in the healthy women, with a mean -tof 1.2 hours in the women with breast cancer and 2.9 hours in the healthy women. After repeated dosing, the average oral clearance in women with advanced breast cancer was 45% lower than the oral clearance in healthy postmenopausal women, with corresponding higher systemic exposure. Mean AUC values following repeated doses in women with breast cancer (75.4 ng∙h/mL) were about twice those in healthy women (41.4 ng∙h/mL).
Aromasin (Exemestane) Clinical Studies
The Intergroup Exemestane Study 031 (IES) was a randomized, double-blind, multicenter, multinational study comparing exemestane (25 mg/day) vs. tamoxifen (20 or 30 mg/day) in postmenopausal women with early breast cancer. Patients who remained disease-free after receiving adjuvant tamoxifen therapy for 2 to 3 years were randomized to receive an additional 3 or 2 years of Aromasin (Exemestane) or tamoxifen to complete a total of 5 years of hormonal therapy.
The primary objective of the study was to determine whether, in terms of disease-free survival, it was more effective to switch to Aromasin (Exemestane) rather than continuing tamoxifen therapy for the remainder of five years. Disease-free survival was defined as the time from randomization to time of local or distant recurrence of breast cancer, contralateral invasive breast cancer, or death from any cause.
The secondary objectives were to compare the two regimens in terms of overall survival and long-term tolerability. Time to contralateral invasive breast cancer and distant recurrence-free survival were also evaluated.
A total of 4724 patients in the intent-to-treat (ITT) analysis were randomized to Aromasin (Exemestane) (exemestane tablets) 25 mg once daily (N = 2352) or to continue to receive tamoxifen once daily at the same dose received before randomization (N = 2372). Demographics and baseline tumor characteristics are presented in Table 5. Prior breast cancer therapy is summarized in Table 6.
After a median duration of therapy of 27 months and with a median follow-up of 34.5 months, 520 events were reported, 213 in the Aromasin (Exemestane) group and 307 in the tamoxifen group (Table 7).
Disease-free survival in the intent-to-treat population was statistically significantly improved [Hazard Ratio (HR) = 0.69, 95% CI: 0.58, 0.82, P = 0.00003, Table 8, Figure 1] in the Aromasin (Exemestane) arm compared to the tamoxifen arm. In the hormone receptor-positive subpopulation representing about 85% of the trial patients, disease-free survival was also statistically significantly improved (HR = 0.65, 95% CI: 0.53, 0.79, P = 0.00001) in the Aromasin (Exemestane) arm compared to the tamoxifen arm. Consistent results were observed in the subgroups of patients with node negative or positive disease, and patients who had or had not received prior chemotherapy. Overall survival was not significantly different in the two groups, with 116 deaths occurring in the Aromasin (Exemestane) group and 137 in the tamoxifen group.
Exemestane 25 mg administered once daily was evaluated in a randomized double-blind, multicenter, multinational comparative study and in two multicenter single-arm studies of postmenopausal women with advanced breast cancer who had disease progression after treatment with tamoxifen for metastatic disease or as adjuvant therapy. Some patients also have received prior cytotoxic therapy, either as adjuvant treatment or for metastatic disease.
The primary purpose of the three studies was evaluation of objective response rate (complete response [CR] and partial response [PR]). Time to tumor progression and overall survival were also assessed in the comparative trial. Response rates were assessed based on World Health Organization (WHO) criteria, and in the comparative study, were submitted to an external review committee that was blinded to patient treatment. In the comparative study, 769 patients were randomized to receive Aromasin (Exemestane) (exemestane tablets) 25 mg once daily (N = 366) or megestrol acetate 40 mg four times daily (N = 403). Demographics and baseline characteristics are presented in Table 9.
The efficacy results from the comparative study are shown in Table 10. The objective response rates observed in the two treatment arms showed that Aromasin (Exemestane) was not different from megestrol acetate. Response rates for Aromasin (Exemestane) from the two single-arm trials were 23.4% and 28.1%.
There were too few deaths occurring across treatment groups to draw conclusions on overall survival differences. The Kaplan-Meier curve for time to tumor progression in the comparative study is shown in Figure 2.
Aromasin (Exemestane) How Supplied/storage And Handling
Aromasin (Exemestane) Tablets are round, biconvex, and off-white to slightly gray. Each tablet contains 25 mg of exemestane. The tablets are printed on one side with the number "7663" in black.
Aromasin (Exemestane) is packaged in HDPE bottles with a child-resistant screw cap, supplied in packs of 30 tablets.
Aromasin (Exemestane) Patient Counseling Information
See
LAB-0098-12.0
FDA- Approved Patient Labeling
Aromasin (Exemestane)
Aromasin (Exemestane)
Aromasin (Exemestane)