Our Coumadin (Warfarin sodium) reviews, ratings, and Coumadin forum are a detailed collection of knowledge shared between individuals, patients, care-givers, and other interested parties. Please share your story today and connect with others who have similar experiences with the Coumadin medications.No registration is required, and your identity will remain anonymous.
5/5 Stars
Based on 4 reviews
Brand Name | Coumadin |
---|---|
Company Name |
Physicians Total Care, Inc.
|
Coumadin (Warfarin sodium) (crystalline warfarin sodium) is an anticoagulant which acts by inhibiting vitamin K-dependent coagulation factors. Chemically, it is 3-(α-acetonylbenzyl)-4-hydroxycoumarin and is a racemic mixture of the - and -enantiomers. Crystalline warfarin sodium is an isopropanol clathrate. The crystallization of warfarin sodium virtually eliminates trace impurities present in amorphous warfarin. Its empirical formula is CHNaO, and its structural formula may be represented by the following:
Crystalline warfarin sodium occurs as a white, odorless, crystalline powder, is discolored by light and is very soluble in water; freely soluble in alcohol; very slightly soluble in chloroform and in ether.
Coumadin (Warfarin sodium) Tablets for oral use also contain:
Coumadin (Warfarin sodium) for Injection is supplied as a sterile, lyophilized powder, which, after reconstitution with 2.7 mL sterile Water for Injection, contains:
Coumadin (Warfarin sodium) and other coumarin anticoagulants act by inhibiting the synthesis of vitamin K dependent clotting factors, which include Factors II, VII, IX and X, and the anticoagulant proteins C and S. Half-lives of these clotting factors are as follows: Factor II - 60 hours, VII - 4-6 hours, IX - 24 hours, and X - 48-72 hours. The half-lives of proteins C and S are approximately 8 hours and 30 hours, respectively. The resultant effect is a sequential depression of Factor VII, Protein C, Factor IX, Protein S, and Factor X and II activities. Vitamin K is an essential cofactor for the post ribosomal synthesis of the vitamin K dependent clotting factors. The vitamin promotes the biosynthesis of γ-carboxyglutamic acid residues in the proteins which are essential for biological activity.
Warfarin is thought to interfere with clotting factor synthesis by inhibition of the C1 subunit of the vitamin K epoxide reductase (VKORC1) enzyme complex, thereby reducing the regeneration of vitamin K epoxide. The degree of depression is dependent upon the dosage administered and, in part, by the patient's VKORC1 genotype. Therapeutic doses of warfarin decrease the total amount of the active form of each vitamin K dependent clotting factor made by the liver by approximately 30% to 50%.
An anticoagulation effect generally occurs within 24 hours after drug administration. However, peak anticoagulant effect may be delayed 72 to 96 hours. The duration of action of a single dose of racemic warfarin is 2 to 5 days. The effects of Coumadin (Warfarin sodium) may become more pronounced as effects of daily maintenance doses overlap. Anticoagulants have no direct effect on an established thrombus, nor do they reverse ischemic tissue damage. However, once a thrombus has occurred, the goal of anticoagulant treatment is to prevent further extension of the formed clot and prevent secondary thromboembolic complications which may result in serious and possibly fatal sequelae.
Coumadin (Warfarin sodium) is a racemic mixture of the - and -enantiomers. The -enantiomer exhibits 2-5 times more anticoagulant activity than the -enantiomer in humans, but generally has a more rapid clearance.
Coumadin (Warfarin sodium) is essentially completely absorbed after oral administrationwith peak concentration generally attained within the first 4 hours.
There are no differences in the apparent volumes of distribution after intravenous and oral administration of single doses of warfarin solution. Warfarin distributes into a relatively small apparent volume of distribution of about 0.14 liter/kg. A distribution phase lasting 6 to 12 hours is distinguishable after rapid intravenous or oral administration of an aqueous solution. Using a one compartment model, and assuming complete bioavailability, estimates of the volumes of distribution of R- and S-warfarin are similar to each other and to that of the racemate. Concentrations in fetal plasma approach the maternal values, but warfarin has not been found in human milk (see ). Approximately 99% of the drug is bound to plasma proteins.
The elimination of warfarin is almost entirely by metabolism. Coumadin (Warfarin sodium) is stereoselectively metabolized by hepatic microsomal enzymes (cytochrome P-450) to inactive hydroxylated metabolites (predominant route) and by reductases to reduced metabolites (warfarin alcohols). The warfarin alcohols have minimal anticoagulant activity. The metabolites are principally excreted into the urine; and to a lesser extent into the bile. The metabolites of warfarin that have been identified include dehydrowarfarin, two diastereoisomer alcohols, 4′-, 6-, 7-, 8- and 10-hydroxywarfarin. The cytochrome P-450 isozymes involved in the metabolism of warfarin include 2C9, 2C19, 2C8, 2C18, 1A2, and 3A4. 2C9 is likely to be the principal form of human liver P-450 which modulates the anticoagulant activity of warfarin.
The -enantiomer of warfarin is mainly metabolized to 7-hydroxywarfarin by CYP2C9, a polymorphic enzyme. The variant alleles CYP2C9*2 and CYP2C9*3 result in decreased CYP2C9 enzymatic 7-hydroxylation of S-warfarin. The frequencies of these alleles in Caucasians are approximately 11% and 7% for CYP2C9*2 and CYP2C9*3, respectively. Patients with one or more of these variant CYP2C9 alleles have decreased S-warfarin clearance (Table 1).
In five prospective randomized controlled clinical trials involving 3711 patients with non-rheumatic AF, warfarin significantly reduced the risk of systemic thromboembolism including stroke (See Table 2). The risk reduction ranged from 60% to 86% in all except one trial (CAFA: 45%) which stopped early due to published positive results from two of these trials. The incidence of major bleeding in these trials ranged from 0.6 to 2.7% (See Table 2). Meta-analysis findings of these studies revealed that the effects of warfarin in reducing thromboembolic events including stroke were similar at either moderately high INR (2.0-4.5) or low INR (1.4-3.0). There was a significant reduction in minor bleeds at the low INR. Similar data from clinical studies in valvular atrial fibrillation patients are not available.
WARIS (The Warfarin Re-Infarction Study) was a double-blind, randomized study of 1214 patients 2 to 4 weeks post-infarction treated with warfarin to a target INR of 2.8 to 4.8. [But note that a lower INR was achieved and increased bleeding was associated with INRs above 4.0; (see )]. The primary endpoint was a combination of total mortality and recurrent infarction. A secondary endpoint of cerebrovascular events was assessed. Mean follow-up of the patients was 37 months. The results for each endpoint separately, including an analysis of vascular death, are provided in the following table:
In a prospective, randomized, open label, positive-controlled study in 254 patients, the thromboembolic-free interval was found to be significantly greater in patients with mechanical prosthetic heart valves treated with warfarin alone compared with dipyridamole-aspirin (p less than 0.005) and pentoxifylline-aspirin (p less than 0.05) treated patients. Rates of thromboembolic events in these groups were 2.2, 8.6, and 7.9/100 patient years, respectively. Major bleeding rates were 2.5, 0.0, and 0.9/100 patient years, respectively.
In a prospective, open label, clinical trial comparing moderate (INR 2.65) vs. high intensity (INR 9.0) warfarin therapies in 258 patients with mechanical prosthetic heart valves, thromboembolism occurred with similar frequency in the two groups (4.0 and 3.7 events/100 patient years, respectively). Major bleeding was more common in the high intensity group (2.1 events/100 patient years) vs. 0.95 events/100 patient years in the moderate intensity group.
In a randomized trial in 210 patients comparing two intensities of warfarin therapy (INR 2.0-2.25 vs. INR 2.5-4.0) for a three-month period following tissue heart valve replacement, thromboembolism occurred with similar frequency in the two groups (major embolic events 2.0% vs. 1.9%, respectively, and minor embolic events 10.8% vs. 10.2%, respectively). Major bleeding complications were more frequent with the higher intensity (major hemorrhages 4.6%) vs. none in the lower intensity.
Coumadin (Warfarin sodium) is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, and pulmonary embolism.
Coumadin (Warfarin sodium) is indicated for the prophylaxis and/or treatment of the thromboembolic complications associated with atrial fibrillation and/or cardiac valve replacement.
Coumadin (Warfarin sodium) is indicated to reduce the risk of death, recurrent myocardial infarction, and thromboembolic events such as stroke or systemic embolization after myocardial infarction.
Anticoagulation is contraindicated in any localized or general physical condition or personal circumstance in which the hazard of hemorrhage might be greater than the potential clinical benefits of anticoagulation, such as:
Coumadin (Warfarin sodium) is contraindicated in women who are or may become pregnant because the drug passes through the placental barrier and may cause fatal hemorrhage to the fetus . Furthermore, there have been reports of birth malformations in children born to mothers who have been treated with warfarin during pregnancy.
Embryopathy characterized by nasal hypoplasia with or without stippled epiphyses (chondrodysplasia punctata) has been reported in pregnant women exposed to warfarin during the first trimester. Central nervous system abnormalities also have been reported, including dorsal midline dysplasia characterized by agenesis of the corpus callosum, Dandy-Walker malformation, and midline cerebellar atrophy. Ventral midline dysplasia, characterized by optic atrophy, and eye abnormalities have been observed. Mental retardation, blindness, and other central nervous system abnormalities have been reported in association with second and third trimester exposure. Although rare, teratogenic reports following exposure to warfarin include urinary tract anomalies such as single kidney, asplenia, anencephaly, spina bifida, cranial nerve palsy, hydrocephalus, cardiac defects and congenital heart disease, polydactyly, deformities of toes, diaphragmatic hernia, corneal leukoma, cleft palate, cleft lip, schizencephaly, and microcephaly.
Spontaneous abortion and stillbirth are known to occur and a higher risk of fetal mortality is associated with the use of warfarin. Low birth weight and growth retardation have also been reported.
Women of childbearing potential who are candidates for anticoagulant therapy should be carefully evaluated and the indications critically reviewed with the patient. If the patient becomes pregnant while taking this drug, she should be apprised of the potential risks to the fetus, and the possibility of termination of the pregnancy should be discussed in light of those risks.
The most serious risks associated with anticoagulant therapy with warfarin sodium are hemorrhage in any tissue or organ (see ) and, less frequently (less than 0.1%), necrosis and/or gangrene of skin and other tissues. Hemorrhage and necrosis have in some cases been reported to result in death or permanent disability. Necrosis appears to be associated with local thrombosis and usually appears within a few days of the start of anticoagulant therapy. In severe cases of necrosis, treatment through debridement or amputation of the affected tissue, limb, breast or penis has been reported. Careful diagnosis is required to determine whether necrosis is caused by an underlying disease. Warfarin therapy should be discontinued when warfarin is suspected to be the cause of developing necrosis and heparin therapy may be considered for anticoagulation. Although various treatments have been attempted, no treatment for necrosis has been considered uniformly effective. See below for information on predisposing conditions. These and other risks associated with anticoagulant therapy must be weighed against the risk of thrombosis or embolization in untreated cases.
It cannot be emphasized too strongly that treatment of each patient is a highly individualized matter. Coumadin (Warfarin sodium) (Warfarin Sodium), a narrow therapeuticrange (index) drug, may be affected by factors such as other drugs and dietary vitamin K. Dosage should be controlled by periodic determinations of prothrombin time (PT)/International Normalized Ratio (INR). Determinations of whole blood clotting and bleeding times are not effective measures for control of therapy. Heparin prolongs the one-stage PT. When heparin and Coumadin (Warfarin sodium) are administered concomitantly, refer below to for recommendations.
Increased caution should be observed when Coumadin (Warfarin sodium) is administered in the presence of any predisposing condition where added risk of hemorrhage, necrosis, and/or gangrene is present.
Anticoagulation therapy with Coumadin (Warfarin sodium) may enhance the release of atheromatous plaque emboli, thereby increasing the risk of complications from systemic cholesterol microembolization, including the “purple toes syndrome.” Discontinuation of Coumadin (Warfarin sodium) therapy is recommended when such phenomena are observed.
Systemic atheroemboli and cholesterol microemboli can present with a variety of signs and symptoms including purple toes syndrome, livedo reticularis, rash, gangrene, abrupt and intense pain in the leg, foot, or toes, foot ulcers, myalgia, penile gangrene, abdominal pain, flank or back pain, hematuria, renal insufficiency, hypertension, cerebral ischemia, spinal cord infarction, pancreatitis, symptoms simulating polyarteritis, or any other sequelae of vascular compromise due to embolic occlusion. The most commonly involved visceral organs are the kidneys followed by the pancreas, spleen, and liver. Some cases have progressed to necrosis or death.
Purple toes syndrome is a complication of oral anticoagulation characterized by a dark, purplish or mottled color of the toes, usually occurring between 3-10 weeks, or later, after the initiation of therapy with warfarin or related compounds. Major features of this syndrome include purple color of plantar surfaces and sides of the toes that blanches on moderate pressure and fades with elevation of the legs; pain and tenderness of the toes; waxing and waning of the color over time. While the purple toes syndrome is reported to be reversible, some cases progress to gangrene or necrosis which may require debridement of the affected area, or may lead to amputation.
Coumadin (Warfarin sodium) should be used with caution in patients with heparin-induced thrombocytopenia and deep venous thrombosis. Cases of venous limb ischemia, necrosis, and gangrene have occurred in patients with heparin-induced thrombocytopenia and deep venous thrombosis when heparin treatment was discontinued and warfarin therapy was started or continued. In some patients sequelae have included amputation of the involved area and/or death.
The decision to administer anticoagulants in the following conditions must be based upon clinical judgment in which the risks of anticoagulant therapy are weighed against the benefits:
ENDOGENOUS FACTORS:
EXOGENOUS FACTORS:
ENDOGENOUS FACTORS:
EXOGENOUS FACTORS:
Because a patient may be exposed to a combination of the above factors, the net effect of Coumadin (Warfarin sodium) on PT/INR response may be unpredictable. More frequent PT/INR monitoring is therefore advisable. Medications of unknown interaction with coumarins are best regarded with caution. When these medications are started or stopped, more frequent PT/INR monitoring is advisable.
It has been reported that concomitant administration of warfarin and ticlopidine may be associated with cholestatic hepatitis.
Caution should be exercised when botanical medicines (botanicals) are taken concomitantly with Coumadin (Warfarin sodium) . Few adequate, well-controlled studies exist evaluating the potential for metabolic and/or pharmacologic interactions between botanicals and Coumadin (Warfarin sodium) . Due to a lack of manufacturing standardization with botanical medicinal preparations, the amount of active ingredients may vary. This could further confound the ability to assess potential interactions and effects on anticoagulation. It is good practice to monitor the patient’s response with additional PT/INR determinations when initiating or discontinuing botanicals.
Specific botanicals reported to affect Coumadin (Warfarin sodium) therapy include the following:
Some botanicals may cause bleeding events when taken alone (e.g., garlic and Ginkgo biloba) and may have anticoagulant, antiplatelet, and/or fibrinolytic properties. These effects would be expected to be additive to the anticoagulant effects of Coumadin (Warfarin sodium) . Conversely, other botanicals may have coagulant properties when taken alone or may decrease the effects of Coumadin (Warfarin sodium) .
Some botanicals that may affect coagulation are listed below for reference; however, this list should not be considered all-inclusive. Many botanicals have several common names and scientific names. The most widely recognized common botanical names are listed.
Coumarins may also affect the action of other drugs. Hypoglycemic agents (chlorpropamide and tolbutamide) and anticonvulsants (phenytoin and phenobarbital) may accumulate in the body as a result of interference with either their metabolism or excretion.
Coumadin (Warfarin sodium) is a narrow therapeutic range (index) drug, and additional caution should be observed when warfarin sodium is administered to certain patients. Reported risk factors for bleeding include high intensity of anticoagulation (INR >4.0), age ≥65, highly variable INRs, history of gastrointestinal bleeding, hypertension, cerebrovascular disease, serious heart disease, anemia, malignancy, trauma, renal insufficiency, concomitant drugs (see ), and long duration of warfarin therapy. Identification of risk factors for bleeding and certain genetic variations in CYP2C9 and VKORC1 in a patient may increase the need for more frequent INR monitoring and the use of lower warfarin doses (see and ). Bleeding is more likely to occur during the starting period and with a higher dose of Coumadin (Warfarin sodium) (resulting in a higher INR).
Intramuscular (I.M.) injections of concomitant medications should be confined to the upper extremities which permits easy access for manual compression, inspections for bleeding and use of pressure bandages.
Caution should be observed when Coumadin (Warfarin sodium) (or warfarin) is administered concomitantly with nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin, to be certain that no change in anticoagulation dosage is required. In addition to specific drug interactions that might affect PT/INR, NSAIDs, including aspirin, can inhibit platelet aggregation, and can cause gastrointestinal bleeding, peptic ulceration and/or perforation.
The objective of anticoagulant therapy is to decrease the clotting ability of the blood so that thrombosis is prevented, while avoiding spontaneous bleeding. Effective therapeutic levels with minimal complications are in part dependent upon cooperative and well-instructed patients who communicate effectively with their physician. Patients should be advised: Strict adherence to prescribed dosage schedule is necessary. Do not take or discontinue any other medication, including salicylates (e.g., aspirin and topical analgesics), other over-the-counter medications, and botanical (herbal) products except on advice of the physician. Avoid alcohol consumption. Do not take Coumadin (Warfarin sodium) during pregnancy and do not become pregnant while taking it (see ). Avoid any activity or sport that may result in traumatic injury. Prothrombin time tests and regular visits to physician or clinic are needed to monitor therapy. Carry identification stating that Coumadin (Warfarin sodium) is being taken. If the prescribed dose of Coumadin (Warfarin sodium) is forgotten, notify the physician immediately. Take the dose as soon as possible on the same day but do not take a double dose of Coumadin (Warfarin sodium) the next day to make up for missed doses. The amount of vitamin K in food may affect therapy with Coumadin (Warfarin sodium) . Eat a normal, balanced diet maintaining a consistent amount of vitamin K. Avoid drastic changes in dietary habits, such as eating large amounts of green leafy vegetables. You should also avoid intake of cranberry juice or any other cranberry products. Notify your healthcare provider if any of these products are part of your normal diet. Contact physician to report any illness, such as diarrhea, infection or fever. Notify physician immediately if any unusual bleeding or symptoms occur. Signs and symptoms of bleeding include: pain, swelling or discomfort, prolonged bleeding from cuts, increased menstrual flow or vaginal bleeding, nosebleeds, bleeding of gums from brushing, unusual bleeding or bruising, red or dark brown urine, red or tar black stools, headache, dizziness, or weakness. If therapy with Coumadin (Warfarin sodium) is discontinued, patients should be cautioned that the anticoagulant effects of Coumadin (Warfarin sodium) may persist for about 2 to 5 days. A Medication Guide should be available to patients when their prescriptions for warfarin sodium are issued.
Carcinogenicity and mutagenicity studies have not been performed with Coumadin (Warfarin sodium) . The reproductive effects of Coumadin (Warfarin sodium) have not been evaluated. The use of warfarin during pregnancy has been associated with the development of fetal malformations in humans (see ).
See .
Safety and effectiveness in pediatric patients below the age of 18 have not been established in randomized, controlled clinical trials. However, the use of Coumadin (Warfarin sodium) in pediatric patients is well-documented for the prevention and treatment of thromboembolic events. Difficulty achieving and maintaining therapeutic PT/INR ranges in the pediatric patient has been reported. More frequent PT/INR determinations are recommended because of possible changing warfarin requirements.
Patients 60 years or older appear to exhibit greater than expected PT/INR response to the anticoagulant effects of warfarin (see ). Coumadin (Warfarin sodium) is contraindicated in any unsupervised patient with senility. Caution should be observed with administration of warfarin sodium to elderly patients in any situation or physical condition where added risk of hemorrhage is present. Lower initiation and maintenance doses of Coumadin (Warfarin sodium) are recommended for elderly patients (see ).
Potential adverse reactions to Coumadin (Warfarin sodium) may include:
Rare events of tracheal or tracheobronchial calcification have been reported in association with long-term warfarin therapy. The clinical significance of this event is unknown.
Priapism has been associated with anticoagulant administration; however, a causal relationship has not been established.
Suspected or overt abnormal bleeding (e.g., appearance of blood in stools or urine, hematuria, excessive menstrual bleeding, melena, petechiae, excessive bruising or persistent oozing from superficial injuries) are early manifestations of anticoagulation beyond a safe and satisfactory level.
Excessive anticoagulation, with or without bleeding, may be controlled by discontinuing Coumadin (Warfarin sodium) therapy and if necessary, by administration of oral or parenteral vitamin K. (Please see recommendations accompanying vitamin K preparations prior to use.)
Such use of vitamin K reduces response to subsequent Coumadin (Warfarin sodium) therapy. Patients may return to a pretreatment thrombotic status following the rapid reversal of a prolonged PT/INR. Resumption of Coumadin (Warfarin sodium) administration reverses the effect of vitamin K, and a therapeutic PT/INR can again be obtained by careful dosage adjustment. If rapid anticoagulation is indicated, heparin may be preferable for initial therapy.
If minor bleeding progresses to major bleeding, give 5 to 25 mg (rarely up to 50 mg) parenteral vitamin K. In emergency situations of severe hemorrhage, clotting factors can be returned to normal by administering 200 to 500 mL of fresh whole blood or fresh frozen plasma, or by giving commercial Factor IX complex.
A risk of hepatitis and other viral diseases is associated with the use of these blood products; Factor IX complex is also associated with an increased risk of thrombosis. Therefore, these preparations should be used only in exceptional or life-threatening bleeding episodes secondary to Coumadin (Warfarin sodium) (Warfarin Sodium) overdosage.
Purified Factor IX preparations should not be used because they cannot increase the levels of prothrombin, Factor VII and Factor X which are also depressed along with the levels of Factor IX as a result of Coumadin (Warfarin sodium) treatment. Packed red blood cells may also be given if significant blood loss has occurred. Infusions of blood or plasma should be monitored carefully to avoid precipitating pulmonary edema in elderly patients or patients with heart disease.
The dosage and administration of Coumadin (Warfarin sodium) must be individualized for each patient according to the particular patient’s PT/INR response to the drug. The dosage should be adjusted based upon the patient’s PT/INR.
For patients with a first episode of DVT or PE secondary to a transient (reversible) risk factor, treatment with warfarin for 3 months is recommended. For patients with a first episode of idiopathic DVT or PE, warfarin is recommended for at least 6 to 12 months. For patients with two or more episodes of documented DVT or PE, indefinite treatment with warfarin is suggested. For patients with a first episode of DVT or PE who have documented antiphospholipid antibodies or who have two or more thrombophilic conditions, treatment for 12 months is recommended and indefinite therapy is suggested. For patients with a first episode of DVT or PE who have documented deficiency of antithrombin, deficiency of Protein C or Protein S, or the Factor V Leiden or prothrombin 20210 gene mutation, homocystinemia, or high Factor VIII levels (>90th percentile of normal), treatment for 6 to 12 months is recommended and indefinite therapy is suggested for idiopathic thrombosis. The risk-benefit should be reassessed periodically in patients who receive indefinite anticoagulant treatment. The dose of warfarin should be adjusted to maintain a target INR of 2.5 (INR range, 2.0 to 3.0) for all treatment durations. These recommendations are supported by the 7th ACCP guidelines.
Five clinical trials evaluated the effects of warfarin in patients with non-valvular atrial fibrillation (AF). Meta-analysis findings of these studies revealed that the effects of warfarin in reducing thromboembolic events including stroke were similar at either moderately high INR (2.0-4.5) or low INR (1.4-3.0). There was a significant reduction in minor bleeds at the low INR. There are no adequate and well-controlled studies in populations with atrial fibrillation and valvular heart disease. Similar data from clinical studies in valvular atrial fibrillation patients are not available. The trials in non-valvular atrial fibrillation support the American College of Chest Physicians’ (7th ACCP) recommendation that an INR of 2.0-3.0 be used for warfarin therapy in appropriate AF patients.
Oral anticoagulation therapy with warfarin is recommended in patients with persistent or paroxysmal AF (PAF) (intermittent AF) at high risk of stroke (i.e., having any of the following features: prior ischemic stroke, transient ischemic attack, or systemic embolism, age >75 years, moderately or severely impaired left ventricular systolic function and/or congestive heart failure, history of hypertension, or diabetes mellitus). In patients with persistent AF or PAF, age 65 to 75 years, in the absence of other risk factors, but who are at intermediate risk of stroke, antithrombotic therapy with either oral warfarin or aspirin, 325 mg/day, is recommended. For patients with AF and mitral stenosis, anticoagulation with oral warfarin is recommended (7th ACCP). For patients with AF and prosthetic heart valves, anticoagulation with oral warfarin should be used; the target INR may be increased and aspirin added depending on valve type and position, and on patient factors.
The results of the WARIS II study and 7th ACCP guidelines suggest that in most healthcare settings, moderate- and low-risk patients with a myocardial infarction should be treated with aspirin alone over oral vitamin-K antagonist (VKA) therapy plus aspirin. In healthcare settings in which meticulous INR monitoring is standard and routinely accessible, for both high- and low-risk patients after myocardial infarction (MI), long-term (up to 4 years) high-intensity oral warfarin (target INR, 3.5; range, 3.0 to 4.0) without concomitant aspirin or moderate-intensity oral warfarin (target INR, 2.5; range, 2.0 to 3.0) with aspirin is recommended. For high-risk patients with MI, including those with a large anterior MI, those with significant heart failure, those with intracardiac thrombus visible on echocardiography, and those with a history of a thromboembolic event, therapy with combined moderate-intensity (INR, 2.0 to 3.0) oral warfarin plus low-dose aspirin (≤100 mg/day) for 3 months after the MI is suggested.
For all patients with mechanical prosthetic heart valves, warfarin is recommended. For patients with a St. Jude Medical (St. Paul, MN) bileaflet valve in the aortic position, a target INR of 2.5 (range, 2.0 to 3.0) is recommended. For patients with tilting disk valves and bileaflet mechanical valves in the mitral position, the 7th ACCP recommends a target INR of 3.0 (range, 2.5 to 3.5). For patients with caged ball or caged disk valves, a target INR of 3.0 (range, 2.5 to 3.5) in combination with aspirin, 75 to 100 mg/day is recommended. For patients with bioprosthetic valves, warfarin therapy with a target INR of 2.5 (range, 2.0 to 3.0) is recommended for valves in the mitral position and is suggested for valves in the aortic position for the first 3 months after valve insertion.
Oral anticoagulation therapy has not been evaluated by properly designed clinical trials in patients with valvular disease associated with atrial fibrillation, patients with mitral stenosis, and patients with recurrent systemic embolism of unknown etiology. A moderate dose regimen (INR 2.0 to 3.0) is recommended for these patients.
The dosing of Coumadin (Warfarin sodium) must be individualized according to patient’s sensitivity to the drug as indicated by the PT/INR. Use of a large loading dose may increase the incidence of hemorrhagic and other complications, does not offer more rapid protection against thrombi formation, and is not recommended. It is recommended that Coumadin (Warfarin sodium) therapy be initiated with a dose of 2 to 5 mg per day with dosage adjustments based on the results of PT/INR determinations. The lower initiation doses should be considered for patients with certain genetic variations in CYP2C9 and VKORC1 enzymes as well as for elderly and/or debilitated patients and patients with potential to exhibit greater than expected PT/INR responses to Coumadin (Warfarin sodium) (see and ).
Most patients are satisfactorily maintained at a dose of 2 to 10 mg daily. Flexibility of dosage is provided by breaking scored tablets in half. The individual dose and interval should be gauged by the patient’s prothrombin response. Acquired or inherited warfarin resistance is rare, but should be suspected if large daily doses of Coumadin (Warfarin sodium) are required to maintain a patient’s PT/INR within a normal therapeutic range. Lower maintenance doses are recommended for elderly and/or debilitated patients and patients with a potential to exhibit greater than expected PT/INR response to Coumadin (Warfarin sodium) (see ).
The duration of therapy in each patient should be individualized. In general, anticoagulant therapy should be continued until the danger of thrombosis and embolism has passed.
The anticoagulant effect of Coumadin (Warfarin sodium) persists beyond 24 hours. If the patient forgets to take the prescribed dose of Coumadin (Warfarin sodium) at the scheduled time, the dose should be taken as soon as possible on the same day. The patient should not take the missed dose by doubling the daily dose to make up for missed doses, but should refer back to his or her physician.
Coumadin (Warfarin sodium) for Injection provides an alternate administration route for patients who cannot receive oral drugs. The IV dosages would be the same as those that would be used orally if the patient could take the drug by the oral route. Coumadin (Warfarin sodium) for Injection should be administered as a slow bolus injection over 1 to 2 minutes into a peripheral vein. It is not recommended for intramuscular administration. The vial should be reconstituted with 2.7 mL of sterile Water for Injection and inspected for particulate matter and discoloration immediately prior to use. Do not use if either particulate matter and/or discoloration is noted. After reconstitution, Coumadin (Warfarin sodium) for Injection is chemically and physically stable for 4 hours at room temperature. It does not contain any antimicrobial preservative and, thus, care must be taken to assure the sterility of the prepared solution. The vial is not recommended for multiple use and unused solution should be discarded.
The PT reflects the depression of vitamin K dependent Factors VII, X and II. A system of standardizing the PT in oral anticoagulant control was introduced by the World Health Organization in 1983. It is based upon the determination of an International Normalized Ratio (INR) which provides a common basis for communication of PT results and interpretations of therapeutic ranges. Acceptable intervals for PT/INR determinations are normally within the range of 1 to 4 weeks after a stable dosage has been determined. Safety and efficacy of warfarin therapy can be improved by increasing the quality of laboratory control. Reports suggest that in usual care monitoring, patients are in therapeutic range only 33%-64% of the time. Time in therapeutic range is significantly greater (56%-93%) in patients managed by anticoagulation clinics, among self-testing and self-monitoring patients, and in patients managed with the help of computer programs. Self-testing patients had fewer bleeding events than patients in usual care.
The management of patients who undergo dental and surgical procedures requires close liaison between attending physicians, surgeons and dentists. PT/INR determination is recommended just prior to any dental or surgical procedure. In patients undergoing minimal invasive procedures who must be anticoagulated prior to, during, or immediately following these procedures, adjusting the dosage of Coumadin (Warfarin sodium) to maintain the PT/INR at the low end of the therapeutic range may safely allow for continued anticoagulation. The operative site should be sufficiently limited and accessible to permit the effective use of local procedures for hemostasis. Under these conditions, dental and minor surgical procedures may be performed without undue risk of hemorrhage. Some dental or surgical procedures may necessitate the interruption of Coumadin (Warfarin sodium) therapy. When discontinuing Coumadin (Warfarin sodium) even for a short period of time, the benefits and risks should be strongly considered.
Since the anticoagulant effect of Coumadin (Warfarin sodium) is delayed, heparin is preferred initially for rapid anticoagulation. Conversion to Coumadin (Warfarin sodium) may begin concomitantly with heparin therapy or may be delayed 3 to 6 days. To ensure continuous anticoagulation, it is advisable to continue full dose heparin therapy and that Coumadin (Warfarin sodium) therapy be overlapped with heparin for 4 to 5 days, until Coumadin (Warfarin sodium) has produced the desired therapeutic response as determined by PT/INR. When Coumadin (Warfarin sodium) has produced the desired PT/INR or prothrombin activity, heparin may be discontinued.
Coumadin (Warfarin sodium) may increase the activated partial thromboplastin time (aPTT) test, even in the absence of heparin. A severe elevation (>50 seconds) in activated partial thromboplastin time (aPTT) with a PT/INR in the desired range has been identified as an indication of increased risk of postoperative hemorrhage.
During initial therapy with Coumadin (Warfarin sodium) , the interference with heparin anticoagulation is of minimal clinical significance.
As heparin may affect the PT/INR, patients receiving both heparin and Coumadin (Warfarin sodium) should have blood for PT/INR determination drawn at least:
For oral use, single scored with one face imprinted numerically with 1, 2, 2-1/2, 3, 4, 5, 6, 7-1/2 or 10 superimposed and inscribed with“Coumadin (Warfarin sodium) ” and with the opposite face plain. Coumadin (Warfarin sodium) is available with potencies and colors as follows:
Distributed by: Princeton, New Jersey 08543 USA
Coumadin (Warfarin sodium) and the color and configuration of Coumadin (Warfarin sodium) tablets are trademarks of Bristol-Myers Squibb Pharma Company.
Copyright © Bristol-Myers Squibb Company 2007
Printed in USA1205733A1 1205735A1 1215386A1 Rev August 2007
Repackaging and Rebeling by:Physicians Total Care, Inc.Tulsa, OK 74146
Read this Medication Guide before you start taking Coumadin (Warfarin sodium) and each time you get a refill. There may be new information. This Medication Guide does not take the place of talking to your healthcare provider about your medical condition or treatment. You and your healthcare provider should talk about Coumadin (Warfarin sodium) when you start taking it and at regular checkups.
Coumadin (Warfarin sodium) is an anticoagulant medicine. It is used to lower the chance of blood clots forming in your body. Blood clots can cause a stroke, heart attack, or other serious conditions such as blood clots in the legs or lungs.
These are not all of the side effects of Coumadin (Warfarin sodium) . For more information, ask your healthcare provider or pharmacist.
Medicines are sometimes prescribed for purposes not mentioned in a Medication Guide. Do not use Coumadin (Warfarin sodium) for a condition for which it was not prescribed. Do not give Coumadin (Warfarin sodium) to other people, even if they have the same condition. It may harm them.
This Medication Guide summarizes the most important information about Coumadin (Warfarin sodium) . If you would like more information, talk with your healthcare provider. You can ask your healthcare provider or pharmacist for information about Coumadin (Warfarin sodium) that was written for healthcare professionals.
If you would like more information, call 1-800-321-1335.
Coumadin (Warfarin sodium) is distributed by: Princeton, New Jersey 08543 USA
Coumadin (Warfarin sodium) is a registered trademark of Bristol-Myers Squibb Pharma Company.
Coumadin (Warfarin sodium) (Warfarin Sodium), the Coumadin (Warfarin sodium) color logo, COLORS OF Coumadin (Warfarin sodium) , and the color and configuration of Coumadin (Warfarin sodium) tablets are trademarks of Bristol-Myers Squibb Pharma Company.
**The brands listed (other than Coumadin (Warfarin sodium) ) are registered trademarks of their respective owners and are not trademarks of Bristol-Myers Squibb Company.
This Medication Guide has been approved by the U.S. Food and Drug Administration.
1205733A1 1205735A1 1215386A1 Rev August 2007